Laser Therapy Research

Laser Therapy U’s online research portal houses an extensive collection of published studies, articles and abstracts from around the world.

Sort through our entire research database using the filter tool above.

Be sure to check back frequently…new items are added weekly!

Using Pre-Exercise Photobiomodulation Therapy Combining Super-Pulsed Lasers and Light-Emitting Diodes to Improve Performance in Progressive Cardiopulmonary Exercise Tests

J Athl Train

Miranda E, Vanin A, Tomazoni S, Grandinetti Vdos S de Paiva PR, Machado Cdos, Monteiro K, Casalechi HL, de Tarso P, de Carvalho, Leal-Junior EC.

8/10/2016 - Postgraduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
OBJECTIVE: To assess the acute effect of photobiomodulation therapy (PBMT) combining superpulsed lasers (low-level laser therapy) and light-emitting diodes (LEDs) on muscle performance during a progressive cardiopulmonary treadmill exercise test.
DESIGN: Crossover study.
SETTING: Laboratory.
PATIENTS OR OTHER PARTICIPANTS: Twenty untrained male volunteers (age = 26.0 ± 6.0 years, height = 175.0 ± 10.0 cm, mass = 74.8 ± 10.9 kg). INTERVENTION(S): Participants received PBMT with either combined superpulsed lasers and LED (active PBMT) or placebo at session 1 and the other treatment at session 2. All participants completed a cardiopulmonary test on a treadmill after each treatment. For active PBMT, we performed the irradiation at 17 sites on each lower limb (9 on the quadriceps, 6 on the hamstrings, and 2 on the gastrocnemius muscles), using a cluster with 12 diodes (four 905-nm superpulsed laser diodes with an average power of 0.3125 mW, peak power of 12.5 W for each diode, and frequency of 250 Hz; four 875-nm infrared LED diodes with an average power of 17.5 mW; and four 640-nm red LED diodes with an average power of 15 mW) and delivering a dose of 30 J per site.
MAIN OUTCOME MEASURE(S): Distance covered, time until exhaustion, pulmonary ventilation, and dyspnea score.
RESULTS: The distance covered (1.96 ± 0.30 versus 1.84 ± 0.40 km, t19 = 2.119, P < .001) and time until exhaustion on the cardiopulmonary test (780.2 ± 91.0 versus 742.1 ± 94.0 seconds, t19 = 3.028, P < .001) was greater after active PBMT than after placebo. Pulmonary ventilation was greater (76.4 ± 21.9 versus 74.3 ± 19.8 L/min, t19 = 0.180, P = .004) and the score for dyspnea was lower (3.0 [interquartile range = 0.5-9.0] versus 4.0 [0.0-9.0], U = 184.000, P < .001) after active PBMT than after placebo. CONCLUSIONS: The combination of lasers and LEDs increased the time, distance, and pulmonary ventilation and decreased the score of dyspnea during a cardiopulmonary test.
Back To Top